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Reflexion and stability of waves 
in stably stratified fluids with shear flow: 

a numerical study 

By WALTER L. JONES 
National Center for Atmospheric Research, Boulder, Colorado 

(Received 5 February 1968) 

A numerical examination has been made of the reflectivity of critical levels with 
low Richardson number to internal gravity waves propagating in stratified 
fluids with shear. At sufficiently low positive Richardson numbers the reflected 
wave may actually be stronger than the incident. 

The normal mode instabilities of three simple models have also been computed. 
The results are presented in three dimensions: Richardson number, horizontal 
wave scale and real wave frequency. 

1. Introduction 
This study was originally undertaken as a numerical extension of the works of 

Bretherton (1966) and Booker & Bretherton (1967) on the propagation of internal 
gravity waves through critical levels in stably stratified shearing fluids. A 
critical level is a level a t  which the horizontal trace velocity of the wave equals 
the mean horizontal velocity of the fluid. These authors found that a t  a Richard- 
son number R, large compared to $, very little wave momentum and energy are 
transmitted, and also very little are reflected. Bretherton discussed the results in 
terms of a wave packet continually moving closer to, but never reaching, the 
critical level. 

These studies, particularly with regard to the reflexion of waves, have here 
been extended to the range of R,ichardson numbers 0-a. I n  this range wave 
behaviour can be quite different from that for larger values of R. 

I n  these numerical analyses, a periodic wave was considered to be generated 
at some remote depth, and to propagate upward through a region of constant 
shear until it reached a critical level. At some point above the critical level, the 
shear zone was terminated and the model capped with an infinite atmosphere of 
uniform mean velocity. 

It was found that a substantial amount of reflexion occurs. At any given wave- 
number and frequency, measured relative to the top fluid, there is a critical value 
of R below which the reflected wave is actually larger than the incident wave. 
This condition, which will be called over-rejlexion, stems from the ability of the 
wave to extract energy and momentum from the mean flow. The critical value 
of R for total reflexion depends, among other factors, on whether the transmitted 
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wave is evanescent or propagating in the upper fluid region. Values ranged up 
to a in the former case, but did not exceed 0.115 in the latter. 

If a wave is over-reflected, it is possible that the wave source, for example a 
layer of turbulence, can in the net receive rather than give up energy. A know- 
ledge of the reflectivity of the mean fluid wind structure may thus provide in- 
sight about the larger scales at which energy is fed into turbulence as well as to 
the energy losses to propagating internal gravity waves. These are the scales of 
the buoyancy subrange of turbulence discussed by Bolgiano (1962) and Lumley 
(1964). 

In a sense, then, the reflectivity results are pertinent to non-linear instability, 
i.e. turbulence in the fluid. At low Richardson numbers the fluid may also be 
linearly unstable with exponentially growing normal modes. These will occur if 
the wind structure and boundary conditions are suitable. The mathematical 
analyses for the wave propagation and stability problems are very similar, the 
former involving the response to an inhomogeneous forcing, while the latter are 
the homogeneous solutions to the same equations. It was thus a relatively 
straightforward task to extend these computations and to examine the stability 
of two or three types of atmospheric models. 

One result of the stability computations is to inject a note of caution in the use 
of singular neutral modes in defining domains of instability. Miles (1961) has 
already cited one such caution: instability domains are bounded by singular 
neutral modes, but the converse need not hold. The point to be made here is that 
these instability domains exist in a multi-dimensional space and may need to be 
considered in such a context. 

As Miles has shown, the problem can be described in terms of several para- 
meters, including wave-number, complex wave speed (or wave frequency, as 
we shall use), Richardson number, and some measure of scale, such as the ratio 
of shear zone thickness to scale of density variation. Unstable eigensolutions 
involving a complex part of the wave speed may be represented as hypersurfaces 
in the four-dimensional space with Richardson number, real wave speed (or real 
frequency), wave-number, and scale measure as axes. 

These hypersurfaces are indeed bounded by singular neutral modes. However, 
what has often been considered is the two-dimensional projection of the singular 
neutral modes onto the Richardson number-wave-number plane. What is not 
a priori evident is that the projection of the instability domains onto such a plane 
is bounded by the projection of the singular neutral modes. 

Three models have been analysed: (i) a zone of constant shear bounded below 
by a solid surface and above by an infinite depth of fluid with constant velocity; 
(ii) a similar model but with a region of constant velocity between the ground 
and the shear layer; (iii) a shear layer bounded above and below by infinitely 
thick layers of constant velocity. In  all cases the fluid was taken to be incom- 
pressible, with an exponential variation in mean density throughout. The 
difference in velocity between top and bottom (our scale measure) was held 
constant, while Richardson number, wave-number, and real frequency were 
varied. 

The first model showed no instability, while the latter two had instability 



Reflexion of waves in stably stratiifiecl fluids 61 1 

surfaces of a reasonably complex nature. The second was unstable at all wave- 
numbers at  sufficiently low Richardson number, and the third was unstable only 
for large wave -numbers. 

2. Reflexion 
The mathematical model 

We shall consider a fluid that is incompressible, inviscid and adiabatic, and 
has a mean density po which varies as e-@, z being the vertical co-ordinate. The 
geometry is taken as Cartesian and non-rotating, with a downward gravitational 
acceleration g. Mean values of variables are denoted with a subscript 0, while 
wave perturbations are given without subscript. 

We shall assume that above z = 0 the fluid has no mean velocity, and that 
below z = 0 and extending some unspecified distance down there is a velocity 
uo = ukz in the x-direction. The shear, u& is taken as constant and positive in 
this region. 

The wave perturbations are taken to vary only in the x- and z-directions. It 
can be shown that variations in the y-direction simply increase the effective value 
of the Richardson number. Then the perturbation equations of motion are: 

where w is the vertical velocity andp the pressure. Incompressibility requires that 

aP ap ap g + u  - + w 0 =  0 
OaX ax ’ 

and the conservation of mass that 

a% aw 
ax ax 
-+- = 0. 

(3) 

(4) 

Assuming the perturbation quantities vary as exp (i(wt + k z ) ) ,  these equations 
can be combined to yield (Chandrasekhar 1961) 

Note that the frequency, w ,  refers to a frame of reference moving with the upper 
half space. 

If we make the substitutions 

then for x > 0, this becomes 

%+[--+L(l+-) 1 P 2  -l I,,, = 0,  ac2 4 4R2 4k2 ( 7 )  
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where 

In the upper half space, solutions take the form 

w1 = CeiG+De-iX, 

where C and D are integration constants, and 
p 2  -1 4 

h = - - 1 + -  1 + -  . :[ d 2 (  4 k 2 )  1 
In the lower half space, equation (8) is Whitaker’s equation and the solution 

(12) 

m = (k-R)B, (13) 

may be written in terms of Whitaker’s functions (cf. Slater 1960): 

~i = AM,,,(<+ Cn) +BMj,-,(C+ Cn), 
where A and B are integration constants and 

Boundary conditions 
Two boundary conditions need to be met at  the interface at  < = 0. To preserve 
continuity of vertical displacement, w1 must be continuous across the interface. 
The second condition can be obtained by integrating ( 5 )  from z = - e to x = + E 

and passing to the limit E = 0, yielding the continuity of 

This may be written 

An additional upper boundary condition is needed as c-+ 00. For this problem, 
we are concerned only with real values of frequency so that h is either pure real 
or pure imaginary. If h is imaginary, so that the transmitted wave is evanescent 
in the upper half space, only the mode which decays with increasing height is 
allowed. Thus if 

h = ip, (17) 

where p is positive, w1 = Ce-pc (18) 

in the upper half space. The physical implication is that the wave is totally 
reflected in the evanescent region. 

If h is real, the transmitted wave propagates in the top half space. A radiation 
boundary condition is then imposed; only the mode providing an upward wave 
energy flux is present. The wave energy flux is 
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where the overbar denotes an average over a cycle and the asterisk denotes 
complex conjugate. The radiation boundary condition then requires that 

in the top half space. 
The upper and interface boundary conditions are sufficient to determine the 

ratio of the amplitude constants A and B of (12). This is sufficient to determine 
the sign o f p j i ,  throughout the fluid, as will be shown. The amplitude of 
and w1 would be fixed if an inhomogeneous boundary condition were to be pro- 
vided as, for example, by specifying the amplitude of wl a t  some lower height. 

(20) w - QeiX  1- 

The wave Reynolds stress, or vertical flux of horizontal momentum, is 

It has been shown that except a t  a singular level, 
(Eliassen & Palm 1961). I n  the shear zone, where equation (8) applies, 

is independent of height 

Re iwf -  = -2mRe(iA*B), ( 2) 
= -2mRe(iA*B)ei2"", (c+<,) < 0. 

This discontinuity has been noted by Booker & Bretherton (1967) in connexion 
with momentum flux discontinuity a t  the singular level. I n  order to obtain 
(22) it is necessary to choose a branch of the solution a t  c+ c0 = 0. We follow 
Booker & Bretherton in choosing the branch for which a r g ( ~ + ~ , )  = --TI, 

c+ c, < 0,  referring the reader to their arguments. 
Since (o + ku,) changes sign a t  the singular level, pX has the same sign through- 

Q U t  the fluid on either side of the singular level, though it may have a different 
sign on one side than the other. 

If p.Eu is positive below the singular level, then a wave source located farther 
down sees the level as a t  most partially reflecting. If jG3  = 0 the level is seen as 
totally reflecting, and if pW < 0, the level is seen as over-reflecting. 

Numerical cornputations 

By inspection of (7), (S), (9), (16), (18) and (20), one sees that there are three 
parameters on which reflectivity must depend: R (or m), j and Q. Note that Q 
is a measure of the frequency of the wave in relation to the fluid in the upper half 
space. Also, j is a measure of the horizontal scale of the wave; it approaches zero 
for very short wavelengths and one for very long wavelengths. Reflectivity also 
depends on Q, but this may be written in terms of the other parameters, 

Thus a t  any point in the three-dimensional R, j ,  Q space we can specify whether 
a critical level is partially, totally, or over-reflective to a gravity wave incident 
from below. Note, though, that the results are dependent on the wind structure 
above the critical level. 

In  addition, the quantitative reflectivity is dependent on the structure of the 
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wind below the critical level, since there may be partial reflexions at  lower levels. 
However, the qualitative results above are not influenced by these partial re- 
flexions, as shown by the constancy of sign of pTl below the critical level. 

The sign of pT1 has been determined numerically over a range of 0 < R < $, 
0 <j Q 1 and 0 Q IR < 5. Whitaker functions were computed from equation 
(14), carrying the expansion to terms < 10-8, As an inhomogeneous boundary 
condition, w1 was set equal to unity at  5 = 0. . 
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FIGURE 1. Richardson number contours of the surface of total reflectivity. SZ is the wave 
frequency non-dimensionalized in terms of the Brunt-Viiisiilii frequency and j is a measure 
of horizontal scale going from zero to one as wavelength goes from zero to  infinity. At a 
given R andj, waves are over-reflected at lower Richardson number and partially reflected 
at  higher Richardson number. 

The results show two domains of over-reflexion, separated from a domain of 
partial reflexion by a surface of total reflectivity. R contours of this surface of 
total reflectivity are shown in figure 1. The surface dips to R = 0 along a curve, 
separating the over-reflective domains. This curve also separates two domains of 
behaviour of the transmitted wave: in the upper region the transmitted wave 
propagates vertically as an internal gravity wave in the upper half-space; in the 
lower region it is evanescent. 

There is a discontinuity in the momentum flux at  the critical level so that 
there is a mean transport of momentum between the level at  which the wave is 
generated and the critical level. As these levels have different mean velocities, 
such a, transport implies a net change in the total kinetic energy of mean flow. 
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This is the source of energy from which the wave can borrow to provide for over- 
reflexion. 

In  the ‘evanescent ’ domain, the total reflectivity surface extends as high as 
R = 0.25. Above this surface, the momentum flux is such that the wave surrenders 
energy to the mean flow. At lower R, it extracts energy. 

In  the ‘propagating ’ domain, the total reflectivity surface approaches 
R = 0.115 as an upper limit. A t  total reflectivity in this case there is a net output 
of wave energy. Incident input and reflected output balance, but there is now an 
additional transmitted energy flux. It is intuitively not surprising that greater 
shears are needed in order to extract this energy from the mean flow. 
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FIGURE 2. Domains of over-reflexion for waves incident from below on a critical level. The 
atmosphere is assumed to consist of two layers of uniform velocity on either side of a shear 
layer of finite thickness and velocity difference Auo = 0.2&@. Waves with values of R, 
j and 

If the shear layer is restricted so that there is a finite velocity difference Au, 
between the top and the bottom of the layer, there will be a further restriction 
on the over-reflective domains. This stems from the fact that at  sufficiently 
large values of j and Q there will be no critical level in the shear zone. Thus if 

lying within the volume shown are over-reflected. 

Au,, = 0.2$/3-4, (24) 
for example, the total reflectivity surface will be confined to the region below the 
dashed line in figure 1. A perspective view of the over-reflective domains in this 
example is shown in figure 2. 

Suppose that this model is limited on the bottom by a totally reflecting lower 
boundary condition. This might take the form of a solid surface located at  the 
bottom of the shear zone or separated from it by a region of constant mean 
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velocity. It might also arise from an infinite lower half space of constant velocity 
in which the wave mode is evanescent. 

Consider the possible singular neutral modes for such a model. A singular 
neutral mode is an eigensolution of real frequency having a critical level. From 
simple energetic considerations, it is obvious that singular neutral modes must 
lie in the surface of total reflectivity. Only then can p-w be zero at  the lower 
boundary. 

The converse, that the surface of total reflectivity is a surface of singular 
neutral modes, is not true. Nor is it true that linearly unstable modes are confined 
to the over-reflexion domains. 

3. Unstable normal modes 
Numerical approach 

Assume that a suitable lower boundary condition is applied to the model of a 
constant shear zone topped by an infinite half space of uniform flow. The model 
may then be treated as a homogeneous system and analysed for normal mode 
solutions. In particular, when Q is complex, so that 

Q = Q2,+ic2$, ( 2 5 )  

solutions with negative imaginary component of frequency are unstable. Case 
(1960) has shown that the normal mode solutions must be supplemented by 
non-exponential solutions, but Miles (1961) has pointed out that these are de- 
caying for positive values of R. Thus the only unstable solutions are those with 
negative imaginary w .  

We have analysed three models to define numerically the unstable modes of 
oscillation. The shear zone and upper half space are taken as for hhe reflectivity 
study. The lower boundaries of these models are as follows. 

Model I. The shear zone is terminated at  the bottom by a solid horizontal 
surface at  which ujl = 0. 

Model 11. The lower boundary is again a solid horizontal surface, at which 
w1 = 0, but there is an intermediate layer of uniform velocity equal to that at  
the bottom of the shear layer. This layer is taken to have a thickness L = O.l/P, 
one-tenth of a density scale height. 

Model 111. The shear layer is bounded beneath by an infinite half-space of 
uniform velocity equal to that of the bottom of the shear layer. In  this ease 
decaying or radiative boundary conditions are applied at  x = -m. In  both 
models I1 and 111, interface boundary conditions must be applied. 

In all three cases, the velocity difference across the shear layer is fixed at  

The boundary conditions lead to a set of algebraic equations, with a seculw 
hu, = o.eg9p-9. 

determinant 

which is equal to zero for a normal mode. For model 11, there is an additional 
parameter, Lp, which could be varied. We may pose the problem as follows. For 
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what values of Or, R, j, Auop31g* and Lp are there negative values of Q, such that 
D = 0'2 The unstable normal modes thus may form hypersurfaces in a four- or 
five-dimensional space. 

In order to simplify the problem, we have fixed two of the parameters, Lp 
and Auo/34g-*. The unstable normal modes then form ordinary surfaces in the 
three-dimensional Q,, R, j space. 

The numerical procedure followed was a more or less brute force one. Pirst 
pa,rticular values of Qr and R were chosen. The real and imaginary parts of the 
secular determinant were then evaluated over a range of j and Qi, normally 21 
points in each of these two directions. Contours of the real and imaginary parts 
of the determinant were drawn automatically in j, Sli space and presented as 
photographic output from a Control Data dd 80 cathode-ray tube plotter 
attached to the Control Data 6600 computer. Any intersections of the zero 
contours of the real and imaginary components marked the locations for un- 
stable normal modes. This procedure was repeated for new values of R and Qr. 
This was done for between 400 and 1300 combinations of R and j  for each model, 
depending on the particular resolution needed, the ranges of j and !2, being 
varied to provide optimum resolution. 

The results for each model are discussed below. 

Model I 

This model showed no normal mode instabilities for any Richardson number in 
the range of 0.0025 < R < 0.25. This is of interest in the light of a conjecture by 
Kuo (1963). Synge's (1933) generalization of Rayleigh's inflexion point theorem 
(see also Howard 1961) is that a necessary condition for instability is that 

change sign somewhere within the fluid. If the fluid is statically neutrally stable 
so that g/3 = 0, then the necessary condition is simply that (pouh)' change sign. 
Buo suggests that in view of the stabilizing effect of stable stratification such an 
inflexion point might be a necessary condition for instability with positive R. 
This model is a crude representation of an atmosphere with smoothly varying uo 
and no inflexion point. On the other hand, models I1 and I11 are crude represen- 
tations of atmospheres with inflexion points and are unstable. 

Model 11 

The instability surface for this model is shown in perspective in figure 3. Except 
for one critical area, it is a more or less vertical sheet. (Values of Q normally vary 
by a few per cent for fixedj over the height of the surface.) Near Qr = 1, however, 
there is a cusp or flap that is folded over and returns to the R = 0 plane at 
Qr E 1.0, j N 0.069. This cusp is shown in detail in a different projection in 
figure 4. 

This surface has a stability boundary consisting of a singular neutral mode 
which lies in the surface of total reflectivity of figures 1 and 3. However, the 
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52, +. 
FIGURE 3. Instability surface for model I1 (earth, shear layer, uniform velocity layer). 
Normal modes with unstable imaginary frequency components are found throughout the 
shaded three-dimensional surface. Note the ‘flap’ in the surface folded over near = 1. 

FIGURE 4. Detail of figure 3 for instability surface of model 11, from a different perspective. 
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j 

FIGURE 5. Projection of instability surface of model I1 on the ( j ,  22)-plane. Contours of 
constant growth rate, Q, are shown by dashed lines, and the projection of the singular 
neutral modes by the heavy solid line. 
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FIGURE 6. Expanded detail of figure 5 .  
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instability surface is not divided into two sections as are the domains of over- 
reflexion. Also, the instability surface of figure 3 in some places intersects the 
surface of total reflectivity without the intersection being a singular neutral 
mode. 

The projection of the instability surface on the (j, R)-plane is shown in figure 5 
with detail shown in figure 6. Contours of constant ill are also shown. If only the 
singular neutral mode projection had been drawn, it would be easy to conclude 
that there were two overlapping modes of instability. Only the continuity of the 
ili contours reveals that there is one instability domain which is folded back 
upon itself. 

Model I I l  

The instability surface for this model is shown in figure 7 with detail shown in 
figure 8. This surface is indeed divided into two domains with bounding singular 
neutral modes. The projections of these instability surfaces on tJhe j, R surface 
are shown on figures 9 and 10. At j < 0.05, the surface behaves smoothly. The 
critical layer at  which or + ku, = 0 is nearly in the centre of the shear zone, the 
small asymmetry stemming from the term involving j in equation (8). [In the 
Boussinesq approximation (Drazin 1958) this term is dropped. The hypo- 
thesis of exchange of stabilities then places the critical layer exactly in the 
centre .] 

In order to understand the behaviour of the remainder of the instability sur- 
face, it is useful to consider the bounding singular neutral mode. At small values 
ofj, hence at large wave-number k ,  the solutions are evanescent in both bounding 
half spaces. As j is increased, however, this becomes impossible. In  the range 
0.05 < j < 0.10 there are two singular neutral modes, one evanescent in the 
upper half space, one in the lower half space. 

As j is increased beyond N 0.10, the wave-number becomes so small that it 
is no longer possible to find il solution evanescent in either domain. The fre- 
quency kAu, drops below the upper cut-off frequency for propagating internal 
gravity waves. It appears that at positive R radiative losses to both plus and 
minus infinity are greater than can be sustained by energy extraction from the 
mean flow. 

The singular neutral mode running from B to B' in figure 8 does not lie in the 
surface of total reflectivity, but is within the over-reflective domain. This mode 
has a radiative rather than evanescent boundary condition at  x = - 00, and the 
radiative energy loss must be accounted for. 

Figures 9 and 10 show the projections of the two instability surfaces on the 
(j, R)-plane. 

Discussion 

There are several points that seem worthy of notice. The cusp, or flap, of figures 3 
and 4 raises an interesting possibility. It might well be that given the right 
boundary conditions, a flap might exist whose projection on the (j, R)-plane 
would not be bounded by the projection of the singular neutral mode. This does 
occur for model I1 for the projection on the (Q?, @-plane. Unless it can be shown 
that this is noi; possible, analysis in these two dimensions alone must be pursued 
with care. 
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FIGURE 7. Instability surface for model I11 (shear layer bounded on both sides by uniform 
velocity layers). Unstable modes form the two shaded surfaces. 

FIGURE 8. Detail of figure 7 from a different perspective. 
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j 

FIGURE 9. Projection of first instability surface of model I11 on the ( j ,  R)-plane. 
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FIGURE 10. Projection of the second instability surface of model I11 on the ( j ,  R)-plane. 
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The greatest instability of models I1 and I11 occurs at  smaller values of j. 
If L is the layer thickness, then 

kL = O.lRi(j-2- 1)*. (28) 

Empirically, the maximum growth rates at  any given R appear to be at  kL 2: 1. 
This is only an approximate relation; the optimum value of kL decreases slowly 
as R is decreased. At larger wavelengths, a stabilizing influence is the efficiency 
with which the disturbance transports energy vertically away from the shear 
zone. Hence, growth rates are smaller. If the wavelength and boundary con- 
ditions are such that energy is efficiently transported in both directions, the 
models seem stable a t  any positive Richardson number. 

Model I11 is a crude approximation to the model used by Drazin, who em- 
ployed a wind profile of the form 

uo = uoo tanh zld.  

The singular neutral mode found by Drazin would correspond to a singular 
neutral mode lying in the right-hand surface of total reflectivity of figure 2. 
At !& > 1.2, our results give a good approximation to this. However, when the 
disturbance non-dimensional real frequency is close to unity when referred to a 
frame of reference moving with the fluid at  either z-fm or z+ - co, the vertical 
scale of the disturbance in this region is large, and the Boussinesq approximation 
used by Drazin is no longer valid. (This corresponds to the condition that 
kd -+ 1.) It is in this non-Boussinesq regime that our results differ from Drazin's. 

Finally, these results give further credence to the belief that there should be 
some form of inflexion criterion as a necessary condition for instability in a 
stably stratified fluid. 

4. Application to a compressible atmosphere 
These results have been derived on the assumption of an incompressible 

density-stratified fluid. One may question whether these results may be applied 
to a compressible fluid. Yih (1965) has considered this question for an isothermal 
atmosphere. The following argument is based on his approach. 

For an isothermal compressible atmosphere with no mean wind, the counter- 
part to ( 5 )  is 

where cs is the speed of sound and 

is a modified Brunt-Vaisala frequency. Under these constraints, ( 5 )  is 

for a compressible fluid. 
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There are two important differences to note. A modified value of N 2  must be 
substituted in the compressible case, and the term W~IC," Ic2 must be considered. 
This term is the square of the ratio of wave horizontal phase speed to sound speed. 
It is normally quite small as long as u,, < c,. Except when W ~ - + N ) ~ ,  this term 
will be negligible. Even under this condition, the behaviour of the two equations 
is similar; the vertical wavelength increases and the wave becomes evanescent as 
w is increased. The transition from a transmitting to a reflecting top is obtained 
at slightly different frequencies. 

On this basis we anticipate that when an appropriate value of the Brunt- 
Vaisala frequency is applied, our results will be qualitatively correct for an 
isothermal compressible atmosphere. The quantitative differences will be most 
pronounced close to the transition from a transmitting to a reflecting model top. 

William Taffe laid much of the groundwork for the reflectivity analysis while 
on a summer visit to NCAR, while Larry Williams and Jeanne Adams gave a 
great deal of help to the author in performing the numerical computations. 
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